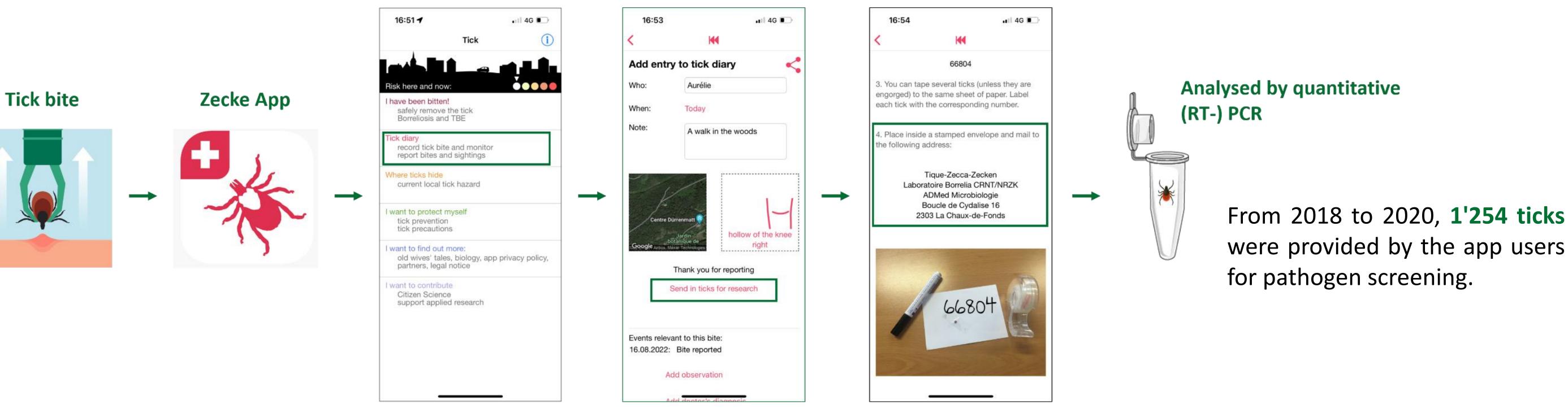


Pathogen prevalence in ticks parasitizing humans

Rahel Ackermann-Gäumann^{1,2}, Aurélie Scherler^{1*}, Werner Tischhauser³, Silvan Haelg⁴, Christian Beuret⁴, Sarah Ryter⁴, Gilbert Greub^{2,5}, Onya Opota^{2,5}, Sébastien Aeby⁵, Marie-Lise Tritten^{1,2} & Reto Lienhard^{1,2}


1. Microbiologie, ADMED Analyses et Diagnostics Médicaux, La Chaux-de-Fonds, Switzerland, 2. Swiss National Reference Centre for Tick-Transmitted Diseases, Switzerland, 3. A&K Strategy GmbH, Winterthur, Switzerland, 4. Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland, 5. Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland *Presenting author: aurelie.scherler@ne.ch

1. Introduction & Aims

Tick-borne diseases represent major public and animal health issues worldwide. In Europe, *Ixodes ricinus* is the most frequent tick species and serves as a vector for numerous human pathogens of bacterial, viral, or protozoic origin of medical and veterinary importance^{1,2}. Its life-cycle includes three developmental stages: larvae hatching from eggs, **nymphs**, and **adult males** or **females**.

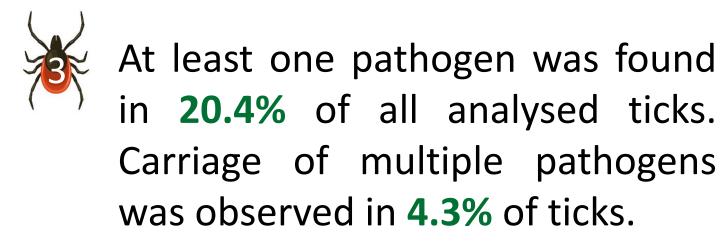
To date, only few studies on pathogen prevalence in ticks parasitizing humans have been performed in Switzerland. In this study, we investigate the prevalence of the following pathogens in *I. ricinus*:

- **Borrelia burgdorferi sensu lato:** Causing agent of Lyme Borreliosis, includes 19 *Borrelia* species
- **Candidatus Neoerlichia mikurensis**: Only few human diseases cases described with fever, septicemia, malaise or weight loss
- Second Se immunocompromised patients
- **Babesia spp.**: Flu-like symptoms or hemolytic anemia
- **Francisella tularensis**: Ulcero-glandular tularemia with localized lymphadenopathy and cutaneous ulcer at infection site
- **Tick-borne encephalitis**: Symptoms ranging from subclinical infections to severe disease including central nervous involvement or death

3. Results

2. Methods

Pathogen prevalence in different areas of Switzerland


		Ticks	<i>B. burgdorferi</i> s.l.		<i>Ca.</i> N. mikurensis		B. miyamotoi		Babesia spp.		F. tularensis		TBEV	
Regions	Cantons		%	n	%	n	%	n	%	n	%	n	%	n
West	GE, VD, NE, FR, VS	186	20.4	38	5.9	11	3.2	6	1.6	3	0	0	0	0
West Central	BE, JU	220	14.1	31	3.6	8	1.4	3	0.9	2	0	0	0	0
East Central	LU, NW, OW, SZ, UR	85	17.6	15	5.9	5	2.4	2	2.4	2	1.2	1	0	0
East	AI, AR, GL, GR, SG, SH, TG, ZG, ZH, (+FL)	440	17.7	78	5.7	25	1.4	6	1.8	8	0	0	0	0
North	AG, BL, BS, SO	204	13.7	28	4.4	9	2.9	6	2.0	4	0	0	0	0
South	TI	99	13.1	13	4.0	4	1.0	1	0.0	0	0	0	0	0
/	No geolocalisation information	20	15	3	0.0	0	0.0	0	5	1	0	0	0	0
	Tota	1'254	16.4	206	4.9	62	1.9	24	1.6	20	0.8	1	0	0

Pathogen prevalence in the different tick developmental stages

Stage	Ticks	<i>B. burgdorferi</i> s.l.		Ca. N. mikurensis		B. miyamotoi		<i>Babesia</i> spp.		F. tularensis		TBEV	
		%	n	%	n	%	n	%	n	%	n		
Larva	88	4.5	4	1.1	1	1.1	1	1.1	1	0	0	0	0
Nymph	1021	17.1	175	5.4	55	1.9	19	1.7	17	0.1	1	0	0
Adult \bigcirc	119	17.6	21	4.2	5	3.4	4	1.7	2	0	0	0	0
Adult 🖒	14	35.7	5	7.1	1	0	0	0	0	0	0	0	0
Unknown	12	8.3	1	0	0	0	0	0	0	0	0	0	0

Infected *I. ricinus* larvae suggest transovarially transmission

4. Conclusions

5. Perspectives

 \mathcal{M} Carrier rates in this study are similar to those previously observed in Switzerland^{2,3,4,5,6}.

K Absence of TBEV in analysed ticks might be due to the low virus prevalence in Switzerland, between 0 and 0.46% as previously published^{1,3}, or to the **RNA degradation** during the sample storage.

* Presence of different pathogens in larvae suggests a transovarially transmission from female tick to larva⁷. This implies that larval bites on human might cause tick-borne diseases.

Example of multiple pathogens occurs in 4.3% of the ticks suggesting a possible cotransmission of pathogens to humans.

Second Straight Assess the prevalence of other ticks pathogens such as **Anaplasma** phagocytophilum, Rickettsia spp.

Investigate transovarially transmission by analysing additional larvae

Study the impact of altitude on the pathogen prevalence in the collected ticks

References

1. CP. Oechslin *et al.*, *Parasit Vectors*. 558 (2017)

2. A. Rizzoli *et al., Front Public Health*. 251 (2014)

3. R. Gaumann et al., Appl Environ Microbiol. 76 (2010)

4. F. Jouda et al., Vector Borne Zoonotic Dis. 4 (2004)

5. E. Lommano *et al., Appl Environ Microbiol.* 78 (2012) 6. FP. Maurer et al., J Clin Microbiol. 51 (2013)

7. D. Hauck et al., Parasites Vectors. 13 (2020)